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Abstract
We study the influence of evanescent modes on the scaling behavior of the renormalized
localization length (RLL) in 2D disordered systems, using the δ-function potential strip model
and the multichain tight-binding Anderson model. In the weak disorder regime we have
evaluated the RLL for large numbers of modes M . It is shown that RLL shrinks with increasing
M which indicates that the electron states will remain localized in an infinitely wide system for
an arbitrarily small disorder, in agreement with existing theories. In the thermodynamic limit
(M → ∞) for the two models, we obtain the localization length in an infinitely large system.
We show that the presence of evanescent modes enhances the RLL with respect to the value
obtained when evanescent modes are absent. We also derive an exact relationship between the
localization length and its corresponding average mean free path for an M-channel system for
the case where propagating as well as evanescent channels are present.

1. Introduction

In quasi-one-dimensional (Q1D) and two-dimensional (2D)
disordered systems the scattering boundary conditions, due to
the electrons’ lateral confinement, couple propagating modes
to non-propagating or evanescent modes. Both of them are the
solutions of Schrödinger’s equation for a given energy E , but
the evanescent modes decay with the distance, do not carry
a current and do not contribute to the Landauer conductance
of a large sample. However, these evanescent modes are of
paramount importance in Q1D and 2D disordered systems
because they may strongly influence the scattering matrix
elements in an indirect fashion via coupling to propagating
states due to the presence of impurity potentials [1–7] and due
to tunneling [8]. The localization lengths (LL) are, in general,
significantly larger than the values obtained when evanescent
modes are absent. The effect of enhanced evanescent modes
on LL was numerically studied by Cahay et al [9] using
the scattering matrix formalism of [1]. The analogous result
for LL has also been found by Heinrichs in [10], using the
Anderson tight-binding (TB) model for coupled two- and
three-chain systems with a white-noise potential in the weak
disorder regime. Transmission, enhanced by the conversion
of evanescent waves into propagating waves, was discussed

in a recent article [11]. The question regarding the effect
of multiple scattering of evanescent waves on the tunneling
transmissivity was addressed in [12]. It was shown that the
transmissivity of a 1D random system, which is periodic on
average for frequencies corresponding to the gap, increases
with increasing disorder when the disorder is weak enough.
The evanescent modes may violate the Friedel sum rule away
from the Fano resonances, even when charge is conserved, as
was reported in [13]. Another reason for the growing interest
in evanescent modes is due to the fact that the Rashba spin–
orbit coupling strength in quantum wires couples the states
along a Q1D channel with the states of transverse motion. As a
consequence, evanescent modes are characterized by complex
wavenumbers with real and imaginary parts. The latter can
affect spin and density distributions around inhomogeneities in
quantum wires [14].

In the majority of these publications, the role of evanescent
modes on quantum transport has been studied in 1D or
single-channel tight-binding models. 2D or multi-channel
random systems with evanescent modes received much less
attention [9, 10, 15, 16]. The main difficulties in 2D disordered
systems arise because it is more difficult to perform analytical
calculations when we deal with a large number of impurities.
At present, most numerical simulations are available as one of
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the effective tools to analyze the behavior of electrons in 2D
and 3D systems (see, e.g., [17–19]). Therefore any study of
quantum transport in disordered multi-channel systems with
many impurities should be quite important and analytical
results are highly desirable (see, e.g., [20, 21] and references
therein). The purpose of the present work goes in this direction,
in the sense that we provide analytical expressions for the RLL
in the thermodynamic limit (the number of modes M → ∞)
for the case where propagating as well as evanescent channels
are present. In the weak disorder regime we were able to obtain
a closed analytic expressions for the averaged transmission
and reflection coefficients for arbitrary numbers of coupled
chains M . We shall establish relationships between the LL
and its corresponding average mean free path for an M-channel
system.

In what follows, we concentrate our attention on the weak
disorder limit because this regime is of general interest for two
reasons. First, in 1D and 2D systems localization occurs for
arbitrarily weak potentials. Second, the LL can be evaluated
in the Born approximation for an uncorrelated potential in 2D
systems [15, 16, 22].

The starting point of the present work is RLL, the
localization length, expressed in units of strip width, which can
be defined as

�(w) = ξLt (w)

Lt
, (1)

in analogy with single-parameter scaling for conductance [23].
Here ξLt (w) is the localization length, Lt is the width of a
2D disordered system and w represents disorder. If �(w)

shrinks with increasing Lt the system behaves like an insulator
(the electron states will remain localized in an infinitely wide
system). If it increases with Lt , the system is metallic, i.e. the
electron states are extended at a large scale.

In this paper, we consider two different models which
are appropriate for disordered mesoscopic systems. The first
model is the set of N 2D Dirac δ potentials, distributed
randomly on a strip:

V (x, y) =
N∑

l=1

Vlδ(x − xl)δ(y − yl), (2)

where (xl, yl) denotes the position of the lth impurity in the
(x, y) plane. Vl is the strength of the lth impurity potential and
may be repulsive (Vl > 0) or attractive (Vl < 0).

Although the use of such an idealized model of the δ-
function scatterer has some limitations, mainly when we deal
with an infinite number of evanescent modes [13, 25, 26],
it still allows us to get an analytical solution for many
scattering problems with complicated potential configurations
in 1D [27–30] as well as in 2D disordered systems [22, 31].
Note that in the case of the single δ-function scatterer (N = 1)
the total effect of the evanescent modes can be included in
the coupling constants and in this way map the multi-channel
problem to the one-mode problem [13, 26]. In the general case,
with two or more δ impurities, this type of simplification of
the problem is not valid any more, because it is impossible
to renormalize the strengths of all the δs simultaneously for
a given cutoff of evanescent modes (see the appendix).

The second model is a Q1D lattice of size L × Lt

described by the standard TB Hamiltonian with nearest-
neighbor interaction:

H =
∑

i

εi |ri 〉〈ri | − t
∑

i, j

|ri 〉〈r j |, (3)

where εi is the energy of site i chosen randomly between
(−w

2 , w
2 ) with uniform probability and t is the hopping matrix

element. The double sum runs over nearest neighbors. L is
the length and Lt is the width of the system. The sample is
connected to two semi-infinite, multi-mode leads to the left and
to the right. For simplicity we take the number of modes in the
left and right leads to be the same (M) and thus the width Lt

of this system equals M (for a TB model the number of modes
coincides with the number of sites in the transverse direction).

For these two models an analytical approach based on
the characteristic determinant (the Green function poles) was
developed in [22] by one of the authors (Gasparian) to find the
expressions for all the scattering matrix elements in Q1D and
2D disordered systems without any restriction on the numbers
of impurities and modes. In spite of the fact that the origins
of these two models are quite different, they are similar in
the sense that their matrix representation for the Hamiltonian
operator has the same structure. This means that they can be
discussed within the framework of the same approach. This
proves to be useful for calculating electron average reflection
and transmission coefficients, localization length and average
mean free path for electrons in multi-channel systems in the
weak disorder regime. In our calculations we closely follow
the method proposed in [22].

This paper is organized as follows. In section 2 we discuss
the randomly arranged 2D δ-function potential strip model. We
briefly discuss the practical algorithm carried out in [22] for
solving the Dyson equation in Q1D and 2D disordered systems
without any restriction on the numbers of impurities (N) and
modes (M), which leads to the description of the scattering
matrix elements in terms of determinants of rank N × N .
In section 3 we calculate the inverse RLL for � � 1 for
periodically arranged 2D δ impurities. In the thermodynamic
limit M → ∞ we compute the localization length in the
infinitely large system. The effect of evanescent modes on
the RLL is presented in section 3.1. The TB Anderson 2D
model is discussed in section 4. Finally, in section 4.1 we
present supplementary results for computing the localization
length and average mean free path when evanescent modes
are present at the Fermi level. The main conclusions are
summarized in section 5. In the appendix we present the
explicit forms for transmission and reflection amplitudes for
the two δ-function systems and establish the relation between
the Green’s functions (GF) for 2D δ strip and TB models.

2. 2D strip model with randomly arranged δ
impurities

Here we recall the Dyson equation for a 2D strip model with
impurity δ potential, equation (2), studied in [22]. We briefly
discuss the practical algorithm carried out in [22] for solving
the Dyson equation in Q1D and 2D disordered systems without
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any restriction on the numbers of impurities (N) and modes
(M), which leads to the description of the scattering matrix
elements in terms of determinants of rank N × N . This will
allow us to map the 2D scattering problem into a 1D problem
with modified matrix elements and to obtain explicit results for
RLL in the Born approximation for � � 1.

Consider the quantum transport of an electron in a 2D
disordered strip, where the electron is confined in the y
direction but is free to propagate in the x direction. The
wavefunction of a single-electron state with energy E is
described by the Schrödinger equation (h̄ = 2m0 = 1):
{
−

(
d2

dx2
+ d2

dy2

)
+ Vc(y) + V (x, y)

}
�(x, y) = E�(x, y),

(4)
where the confinement potential Vc(y) depends on the
transverse direction y and V (x, y) is the potential of the
impurities in the 2D strip and is given by equation (2). It
is worth noting that none of the main results of this paper
will change drastically if, instead of the set of δ-function
potentials (2), we take slightly modified δ-like potentials in
each (xl, yl) in a 2D strip, as discussed in [3].

The transverse mode wavefunction χn(y) satisfies a 1D
Schrödinger equation:

{
− d2

dy2
+ Vc(y)

}
χn(y) = Enχn(y), (5)

where n is the sub-band index and En are the sub-band
energies. In general, χn(yl) depends on the choice of the
confinement potential Vc(y). If we take Vc(y) to be zero for
0 � y � Lt and infinite elsewhere, then for χn(yl) we get

χn(yl) =
√

2

Lt
sin

(
nπyl

Lt

)
. (6)

The equation for the Green’s function (GF) in a Q1D
system with potential V (x, y) is
[
−

(
d2

dx2
+ d2

dy2

)
+ Vc(y) + V (x, y) − E

]
G(N)(xy; x ′y ′)

= −δ(x − x ′)δ(y − y ′). (7)

The Dyson equation for a Q1D wire can be written in the
form [2, 32]

G(N)
nm (x, x ′) = G(0)

n (x, x ′)δnm

+
∑

k,q

∫
G(0)

n (x, x ′′)δnk Vkq(x ′′)G(N)
qm (x ′′, x ′) dx ′′, (8)

where G(0)
n (x, x ′) is the GF in the absence of the defect

potential V (x, y) and obeys the equation
[
− d2

dx2
− (E − En)

]
G(0)

nm(x; x ′) = −δ(x − x ′)δnm . (9)

Thus G(0)
nm(x; x ′) is diagonal in the indices n and m, as

G(0)
nm(x; x ′) = G(0)

n (x; x ′)δnm . The explicit form of G0
n(x, x ′)

which corresponds to a propagating mode and satisfies
equation (9) is

G0
n(x, x ′) = − i

2kn
exp(ikn|x − x ′|), (10)

where the wavevector kn is given by

kn = +
√

E − n2π2

L2
t

, n = 1, 2, . . . . (11)

The GF, G0
n(x, x ′), for an evanescent mode can be found from

equation (10) with an analytic continuation of the kn = iκn ,
where κn is defined by

κn = +
√

n2π2

L2
t

− E, (E < n2π2/L2
t ). (12)

The upper index (l) of the GF (in equation (9) the index
l = 0) indicates that the GF is calculated in the presence of
lδ potentials.

The main algorithm for finding the GF for the whole
system with N δ potentials is based on the idea of recursively
building up the total GF. In such calculations, the GF is
evaluated first when one δ potential is available. The case
of two δ potentials is then solved using the GF for a single
δ potential. Then we solve the problem iteratively with N δ

potentials by taking the solution with the (N − 1) known
δs, and extract the scattering matrix elements. Thus we can
obtain GF’s elements in an arbitrary interval [xn, xn+1] (n =
1, . . . , N − 1) of a disordered system [22, 28].

In the following our main interest will be in the matrix
elements of the GF for the range x, x ′ � x1. This allows us
to calculate the total transmission and reflection amplitudes of
an electron which is incident on the system from the left. We
use the well-known relations between the scattering amplitudes
and GF [33]. The explicit form of the matrix elements of GF
for x, x ′ � x1 is given as

G(N)
nm (x, x ′)=G(0)

n (x, x ′)δnm+R(N)
nmL

G0
n(x, x1)G0

m(x1, x ′)√
G0

n(x1, x1)G0
m(x1, x1)

,

(13)
where R(N)

nmL is the matrix element of reflection from the whole
system with N δ potentials and may be written as the ratio of
two determinants (for more details see [28, 30]):

R(N)
nmL = (−1)N 1

det (D(N)
i, j )M,1

×

∣∣∣∣∣∣∣∣∣

0 r (1)
nm · · · r (N)

nm eikn |xN −x1 |
1 · · · · · · · · ·
...

... (D(N)
i, j )M,m

eikm |xN −x1 | ...

∣∣∣∣∣∣∣∣∣

. (14)

r (l)
nm is the complex amplitude of the reflection of an electron

from the isolated potential Vl in the absence of the remaining
(N − 1) potentials [2]:

r (l)
nm = V (l)

nm

√
G(0)

n (xl, xl)G(0)
m (xl, xl)

1 − ∑M
p V (l)

pp G(0)
p (xl, xl)

. (15)

Note that the r (l)
nm satisfy the identity r (l)

mmr (l)
nn − r (l)

mnr (l)
nm = 0,

which can be checked directly by making use of equation (15).

3
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The numerator of R(N)

nmL is obtained from the most
significant quantity det(D(N)

i, j )M,m , which is the pole of the GF
(see equation (16)), by augmenting it on the left and on the top.
The matrix elements of the denominator (D(N)

i, j )M,m , which
contains information about the number of modes M [1 �
i, j � N; 1 � m � M], are

(D(N)
i, j )M,m = −δi j + (1 − δi j)

M∑

p=1

r (i)
1 pr ( j)

pm

r (i)
1m

eikp |x j −xi |. (16)

The quasibound states of an electron in the disordered Q1D or
2D systems can be found from the condition det(D(N)

i, j )M,1 = 0.
A particular case of this equation, the spectrum of the single δ-
function scatterer (N = 1) with finite number of modes M in
a 2D waveguide, was studied in [3]. Note that equation (16)
reduces to the characteristic determinant of a purely 1D system
(see [29, 30, 34]), if there is no coupling to the second, third,
etc, mode, i.e. r (p)

p1 = r (p)

1 p = 0.
Inserting the appropriate GF’s matrix elements, equa-

tion (13), x = 1 and x ′ = xN , one can calculate the transmis-
sion amplitude T (N)

nmL of an electron through the system with
N δ potentials. Similarly to R(N)

nmL , we can write the explicit
form of T (N)

nmL as a ratio of two determinants3

T (N)

nmL = (−1)N eikm (xN −x1)

det (D(N)

i, j )M,1

×

∣∣∣∣∣∣∣∣∣

δnm r (1)
nm · · · r (N)

nm eikn |xN −x1 |
1 · · · · · · · · ·
...

... (D(N)
i, j )M,m

e−ikm |xN −x1 | ...

∣∣∣∣∣∣∣∣∣

, (17)

where the numerator of T (N)
nmL is obtained from the same

determinant (16) by augmenting it on the left and on the top.
In the appendix we present the explicit expressions for the

transmission and reflection amplitudes for the case when we
have two δ functions (N = 2) and an arbitrary number of
modes M .

Note that by employing equations (14) and (17), it is
straightforward to check by mathematical induction that, for
the scattering matrix elements, current conservation takes
place:

M∑

m=1

(T (N)
nmL T (N)

nmL

∗ + R(N)
nmL R(N)

nmL

∗
) = 1. (18)

Here the summation is carried out over the propagating modes
of the wire only.

Using the explicit forms of equations (14) and (17) it can
be shown that the electron’s transmission, T (N)

nm , and reflection,
R(N)

nm , amplitudes in the limit of weak disorder are specifically
given by

T (N)
mm ≈ eikm (xN −x1)

1 + i
∑N

l=1 Vl

(
Al − sin2

(
mπyl

Lt

)

km Lt

)

1 + i
∑N

l=1 Vl Al

, (19)

3 The phase factor eikm (xN −x1) in equation (17) was omitted in the analogous
equation (10) of [22].

T (N)
nm ≈ − ieikm (xN −x1)

Lt
√

knkm

N∑

l=1

Vl sin

(
nπyl

Lt

)

× sin

(
mπyl

Lt

)
ei(kn−km )(xl −x1), (20)

R(N)
mm ≈ − i

Lt km

N∑

l=1

Vlsin2

(
mπyl

Lt

)
e2i(xl −x1)km , (21)

and

R(N)
nm ≈ − i

Lt
√

knkm

N∑

l=1

Vl sin

(
nπyl

Lt

)

× sin

(
mπyl

Lt

)
ei(kn+km )(xl −x1) (22)

with Al = ∑M
n=1 sin2(nπyl/Lt )/Lt kn . yl is the coordinate

of the lth δ impurity in the y direction, and x1 and xN are
the x coordinates of the first and last (N th) δ functions. The
wavenumbers kn for the propagating modes are defined by
equation (11). A finite number M includes effects from
both the open and closed modes. The wavenumbers of the
evanescent modes are obtained by setting kn = iκn, where κ

is defined by equation (12).
The inverse localization length ξM as a function of the

system size L and modes M is evaluated from

ξ−1
M = − lim

L→∞
1

2L

〈
ln

M∑

n,m

|T (N)
nm |2

〉
. (23)

After ensemble averaging over the random potentials Vl ,
distributed uniformly in an interval [−w/2, w/2] with the use
of equations (19) and (20), equation (23) takes the simple
form [22]

1

ξδ
M

= α

2N M L2
t

N∑

l=1

{ M∑

n=1

sin2(
nπyl

Lt
)

kn

}2

, (24)

with α = 〈V 2
l 〉 = w2/12. To derive equation (24) we first note

that the phases in T (N)
nm are irrelevant for a white-noise potential

where 〈Vi Vk〉 = αδik . In other words, the configuration of δ-
potential atoms is not important for uncorrelated potentials, in
the linear approximation of perturbation theory. This means
that, without any loss of generality, we can arrange δ functions
in the x direction periodically with spacing a = 1 and thus
replace the finite length L = Na by N . Next note that
the above expression 1/ξδ

M is exact to order w2 for the weak
disorder regime and valid for any type of distribution for yl .

The expression (24) can be simplified further if we arrange
δ functions periodically also in the y direction. This will be
done in the next sections, separately for the situation when all
the M channels are propagating and when ν are propagating
and M–ν are evanescent.

3. Periodically arranged δ impurities

Let us consider the disordered strip model with the potential (2)
in the form of periodically positioned 2D δ functions with
random strength, Vl . For a 2D Kronig–Penney model with

4
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vertical type of disorder in the distribution of scatterers the
RLL � can be calculated analytically in the weak disorder
regime using the characteristic determinant approach [22].
Note that a similar 2D strip model with δ-function potentials
arranged periodically was used by Azbel and co-workers
to investigate non-exponential-localized eigenstates in a
disordered system [31, 35]. In numerical calculations of the
persistent electron current in a disordered Q1D conducting ring
with many channels, the analogous model to (2) with random
positions and signs of δ potentials was adopted in [36].

Before entering into a more detailed analysis of this case,
several assumptions are in order: (i) for simplicity we discuss
the case when the spacing constants in the x and in the y
directions are equal and are taken to be of unit length. This
means that in the y direction we choose a discrete lattice whose
points are located at yl = l, (l = 1, 2, . . . , M) and thus the
width Lt = M +1. (ii) In (i) the maximum value of l coincides
with the number of propagating modes M . This is an essential
point which allows us to consider the 2D δ-function strip model
as a discrete lattice of size (N × M), where N and M are the
number of δ potentials in the x and y directions, respectively.
Equation (24) then simplifies to the following form:

M

ξδ
M(w)

= α

16(M + 1)

[ M∑

n=1

3 + δ2n,M+1

k2
n

+ 2
M∑

n<p

2 + δn+p,M+1

knk p

]
. (25)

The structure of this formula for the inverse RLL is similar to
the corresponding formula for the 2D Anderson TB model (see
equation (34)), which justifies the similarity of the two models
discussed in this paper.

Our task is now to evaluate equation (25) in the
thermodynamic limit. As outlined above, in the case � � 1
the width Lt of the strip is much larger than ξM (w). This
means that, for large Lt (and hence for large M), the sums
in equation (25) can be replaced by an integral and carried out
by using the known formula (see, e.g., [37])

M∑

n=0

f (n) =
∫ M+ 1

2

− 1
2

f (n) dn − 1
24

[
f ′

(
M + 1

2

)
− f ′

(
− 1

2

)]
.

(26)
This enables us to obtain an approximate analytical

expression for equation (25) when � � 1. Performing
the integrals and keeping only the relevant terms, after some
algebra, the following formula for the inverse RLL 1/�δ =
M/ξδ

M , equation (25), is obtained (from here on, we substitute
M for Lt as the width of the strip):

1

�δ
= Cδ + M

ξδ∞(w)
, (27)

where

Cδ = bα

8π2

(
arcsin b − 5

8
ln

1 + b

1 − b

)
(28)

and b ≡ π/
√

EF. ξδ∞ is the localization length in the infinitely
large system in the limit M → ∞ and can be determined as

ξδ
∞ = lim

M→∞
ξδ

M ≈ 8π2

α(arcsin b)2
. (29)

Figure 1. Log–log plot of the renormalized localization length �δ as
a function of modes M for the values of the Fermi energy EF = 10
and for disorder w = 0.5. Solid and dashed lines are given by
equations (25) and (27), respectively, and the slope of the solid
straight line is equal to −1.

Equation (27) with equation (36) (see below) represent the
central results of this work. They express the RLL in terms
of number of modes M and disorder w and show that 1/�δ

increases linearly with increasing number M of δ potentials in
the y direction. This indicates that in a 2D disordered system of
δ potentials localization sets in for an arbitrarily small disorder
α = w2/12, as predicted [23].

It is worth noticing that an expression similar to
equation (27) was found in [19] using a numerical estimate
of the β function in 2D systems with spin–orbit coupling in
the insulating phase, where the disorder is very strong and
the localization length is short. Thus ξδ

M(w) � M , i.e. the
inequality �δ � 1 holds, and thus spin–orbit coupling does
not play any essential role in the insulating phase. In [19] Cδ

and ξ∞(w) were parameters fitted at each disorder w (or α).
In figure 1 we have plotted the �δ , equation (25), as a

function of the number of modes M for the values of the Fermi
energy EF = 10 (b = 0.99) and of the disorder w = 0.5.
The slope of the solid straight line is equal −1, as expected.
We have checked that for large values of M the dashed line,
i.e. the approximate analytical expression (27) agrees very well
with the exact expression (25) in the whole range 0 < b < 1.
The deviation between the two lines for small M in figure 1
depends on the specific value of the logarithmic term in Cδ .

In figure 2 the dependence of ln ξδ∞ is shown as a function
of the disorder parameter w (or α). One can see that the curve
is consistent with the numerical result of [24] for the 2D strip
model. Note that ξδ∞ increases with increasing EF (i.e. b is
decreasing) and decreases with increasing disorder α of the
system. In the limit of large EF (b tends to zero) we have

ξδ
∞ = 8EF

α
(30)

which agrees with the well-known result of LL in the 1D
system [38].
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Figure 2. Dependence of the localization length on disorder,
α = w2/12, in the infinitely large system based on equation (29).

3.1. RLL and evanescent modes

Our objective in this section is to extend our previous
calculations [22] and to investigate the influence of evanescent
states on the scaling behavior of RLL. We proceed along
the same lines as in section 3 and we show that only minor
modifications of the final expression for the RLL, equation (25)
are required in order to include (M–ν) evanescent modes. The
final expression for RLL can be presented in the following
form:

ν

ξδ
ν (M, w)

= α

16(M + 1)

[ ν∑

n=1

3 + δ2n,M+1

k2
n

+ 2
ν∑

n<p

2 + δn+p,M+1

knk p

]
, (31)

where ν is the number of propagating modes and M is
the total number of modes (propagating and evanescent).
From the comparison of RLL in the presence of evanescent
modes, equation (31), with the expression of RLL when
evanescent modes are absent (see equation (25)) one can see
that in equation (31) the sum runs only up to ν propagating
modes. The reason for this restriction in such a simple
way was pointed out by Heinrichs [10], in the analysis of
the effect evanescent states have on the ensemble average
conductance in coupled two- and three-chain TB model
for weak disorder. The main idea is that the absence of
coupling effects between propagating and evanescent modes is
specific to the weak disorder approximation, where first-order
perturbation was used, which ignores higher-order coupling
effects. A similar situation arises also during the calculation
of RLL in multi-channel 2D δ-potential disordered systems
with M–ν evanescent modes in the weak disordered regime,
as follows from equation (31).

It is not difficult to see from (31) that the presence of
evanescent modes enhances the RLL (the localization length
expressed in units of the strip length) with respect to RLL when
evanescent modes are absent (see equation (25)). The reason
is quite clear from a physical point of view: with increasing
numbers of evanescent modes, the δ-type scatterer becomes
more and more transparent. As the number of evanescent

modes increases towards infinity, we get perfect transmission
for all the values of the Fermi energy [2, 13, 25]. This
leads to perfect conductance and hence to the increase in
localization length. The main consequence of enhanced RLL
in a 2D strip is the fact that the presence of M–ν evanescent
modes qualitatively changes the limiting behavior of the single
parameter scaling hypothesis for small �: in the limit � → 0
β tends to −2, instead of −1 (details of the analytical
derivation will be given elsewhere [44]).

Similarly to equation (27), we derive an approximate
expression for ν/ξδ

ν (M, w), equation (31), for large ν:

1

�δ
ν

= Cδ + ν2

Mξδ∞(w)
, (32)

where the parameters Cδ and ξδ∞ are defined by equations (28)
and (29), respectively. Using this expression and equation (27),
it is easy to see that inequality �δ/�δ

ν < 1 takes place:

�δ

�δ
ν

=
Cδ + ν2

Mξδ∞(w)

Cδ + M
ξδ∞(w)

< 1. (33)

4. Tight-binding model

In this section we consider the 2D TB model with arbitrary
number M of modes and finite length N for which the LL was
calculated in [22] in the weak disordered regime:

M

ξTB
M (w)

= α

16(M + 1)

×
[ M∑

n=1

3 + δ2n,M+1

sin2 kn
+ 2

M∑

n<p

2 + δn+p,M+1

sin kn sin k p

]
, (34)

where α is the same as in the model of 2D δ-function potentials,
equation (25). The wavevector kn must be found from the
dispersion relation [39, 40]

E = 2 cos kn + 2t cos
nπ

M + 1
. (35)

It is easy to check that, for particular values M = 2 or 3, the
results of [5] for LL can be reproduced from equation (34). In
the limit of no interchain hopping (t = 0 and thus all kn are
equal) the same equation reduces precisely to the 1D result for
LL [38]: ξTB

1 (w) = (8 sin2 k)/α, as expected.
At the band center (E = 0) and proceeding along the

same lines as in section 3.1, we can evaluate the sums in
equation (34) by replacing them by integrals and evaluating
them using equation (26) in the case � � 1. After some
algebra, the following formula for the inverse RLL M/ξδ

M ,
equation (34), is obtained:

1

�TB
= CTB + M

ξTB∞ (w)
, (36)

where

CTB = α

8π(1 − t2)

[
F

(
π,− t2

1 − t2

)
− 3π

√
1 − t2

2

]
(37)
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Figure 3. Log–log plot of the renormalized localization length �TB

as a function of modes M at the band center E = 0 (solid and dotted
lines) and at E = 1 (dashed line). The value of disorder is w = 0.5
and the interchain hopping is t = 0.5. The solid and dotted lines are
given by equations (34) and (36), respectively. For E = 1 the dashed
line was calculated from equation (34). All the channels are
propagating.

and F(φ, m) is the elliptic integral of the first kind. ξTB∞ is the
localization length of an infinitely large system TB model at
the band center E = 0 and defined by

ξTB
∞ = lim

M→∞
ξTB

M ≈ 8π2(1 − t2)

αF2(π,− t2

1−t2 )
. (38)

A similar expression for �TB at E > 0, in the form of
the elliptic integral (of the first kind), can be found in [16],
where the authors used a perturbative formula for the lowest
Lyapunov exponent of an Anderson model on a strip.

Using the series expansion for F(φ, m) ≈ φ when
φ2m/6 � 1 (in terms of t , the latter inequality is: t2 �
6/(π2 + 6)), one can get an approximate expression for ξTB∞ ≈
8/α, which is Thouless’ expression for localization length
(8 sin2 k)/α at k = π/2.

In figure 3 we represent the �TB, equation (34), as a
function of the number of modes M at the band center E = 0
(solid line) and at E = 1 (dashed line) on a double logarithmic
scale. The value of disorder is w = 0.5 and the interchain
hopping is t = 0.5. Although for E = 1 the RRL (dashed line)
is decreasing the slopes of the lines, presented in figure 3, are
−1, as expected. One can see that the approximate analytical
expression (36) (dotted line) agrees very well with the exact
expression (34) for large values of the modes M . We have
checked that good agreement is found for both dotted and solid
lines also in the range of hopping parameter 0 < t � 0.8

4.1. Mean free path in disordered multi-channel TB modes

In [10], the author discussed the influence of evanescent modes
on localization length, ξTB

M (w), in few-channel (M = 2, 3)
strips, as described by the standard Anderson TB model.
Using a scattering matrix approach and the expression for the
single elastic mean free path l, defined in the framework of
a maximum entropy approach to multi-channel systems [41],

it was shown that for the two- and three-channel cases the
following relation holds between localization length ξTB

M (w)

and l:
ξTB

M (w) = 2l. (39)

This result agrees with the result for 1D conductors and
demonstrates that all states are localized in two- and three-
chain disordered systems. On the other hand, if we extrapolate
the above relation to the many-channel case then even for very
large M and for weak disorder all states must be localized.
Furthermore, there is no length scale that leads to the metallic
Ohm’s law for conductance. This is in contrast to the well-
known Thouless’ relation [38]:

ξTB
M (w) ≈ Ml, (40)

which shows that there must be a domain of length scales
where the eigenstates are delocalized (diffusive quasimetallic
domain) (see, e.g., [42]). The physical origin of this
discrepancy, as pointed out by Heinrichs in [43], is that in the
case of the multi-channel TB strip model the mean free paths
in the conducting channels are generally different. Thus one
must, instead of using the concept of the single elastic mean
free path [41], use the following definition for the average
mean free path lTB

M (w):

1

lM
= 1

N

M∑

n,m=1

〈|R(N)
nm |2〉. (41)

We recall that R(N)
nm is a reflection amplitude for an electron,

which is incident along the nth transverse mode and scattered
back along the mth transverse mode as given by (22).

The difference between 1/ lM , equation (41), and the
expression 1/ l, equation (39), used in the maximum entropy
approach (see, e.g., [10]) is that the latter contains an additional
factor 1/M . Taking into account the correct relation, l = MlM ,
equation (39) now is [43]

ξTB
M (w) = 2MlM , M = 2, 3. (42)

The existence of the metallic domain in the coupled disordered
two and three TB chains follows from this equation.

Below we generalize relation (42) for an arbitrary number
of TB channels M using the definition for the average mean
free path (41). We discuss the two cases when all M channels
are propagating and for (M–ν) evanescent channels.

4.1.1. All channels are propagating. As mentioned in
section 1, one can discuss two different models for a disordered
2D system within the framework of the same approach: a set of
2D δ potentials with signs and strengths determined randomly
and a TB Hamiltonian with several modes and on-site disorder.

We will use equations (19)–(22) to calculate the
transmission and reflection coefficients in a TB model, and
hence the average mean free path lM , equation (41). By
replacing kn by sin kn in these expressions and averaging over
the disorder we obtain for 〈|T (N)

nm |2〉 and 〈|R(N)
nm |2〉 the following

expressions [44].
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If 2m �= M + 1:

〈|T (N)
mm |2〉 = 1 − Nα

8(M + 1)

×
{

3

sin2 km
+ 2

sin km

M∑

m �=p

2 + δm+p,M+1

sin k p

}
. (43)

If 2m = M + 1, then

〈|T (N)
mm |2〉 = 1 − Nα

2(M + 1)

{
1

sin2 km
+ 1

sin km

M∑

m �=p

1

sin k p

}
,

(44)
or

〈|T (N)
nm |2〉 = Nα

8(M + 1)

2 + δm+n,M+1

sin km sin kn
. (45)

〈|R(N)
mm |2〉 = Nα

8(M + 1)

3 + δ2m,M+1

sin2 km
, (46)

or

〈|R(N)
nm |2〉 = Nα

8(M + 1)

2 + δm+n,M+1

sin kn sin km
. (47)

Inserting equations (46) and (47) in equation (41), we get for
the average mean free path

1

lM
= α

8(M + 1)

[ M∑

n=1

3 + δ2n,M+1

sin2 kn
+ 2

M∑

n<p

2 + δn+p,M+1

sin kn sin k p

]
.

(48)
Comparison of equation (48) with the expression for
M/ξTB

M (w), equation (34), yields the desired result:

ξTB
M (w) = 2MlM , M = 2, 3 . . . (49)

which is the natural generalization of equation (42) for an
arbitrary number of channels M and is exact to order w2 for
the weak disordered regime. Equation (49) is comparable with
the result of [45], ξM (w) = lc(2M + 1), where lc is the elastic
scattering length.

The range of length scales for the diffusive quasimetallic
domain, where Ohm’s law for the conductance can be
observed, is

lM � l � MlM = ξTB
M (w). (50)

4.1.2. Mean free path: (M − ν) evanescent channels.
Consider the case of E1 < E2 · · · E < Eν . Only the first
ν modes can propagate along the 2D system, whereas M–ν

cannot (M is the total number of channels). The influence
of evanescent modes on the calculation of the free path can
be treated similarly to sections 2 and 3. All the steps can
be repeated for this case in a TB model. We obtain the
final expressions for the inverse localization length and for an
average mean free path

ν

ξν

= α

16(M + 1)

[ ν∑

n=1

3 + δ2n,M+1

sin2 kn
+ 2

ν∑

n<p

2 + δn+p,M+1

sin kn sin k p

]
,

(51)
and

1

lν
= α

8(M + 1)

[ ν∑

n=1

3 + δ2n,M+1

sin2 kn
+ 2

ν∑

n<p

2 + δn+p,M+1

sin kn sin k p

]
.

(52)

It is useful to compare the pair of equations (51) and (52)
with (34) and (48). Their similarity is obvious. The essential
difference is that the index n in the summation runs up to ν,
i.e. up to the maximum propagating mode. The use of the weak
disorder approximation leads to the suppression of the effect of
(M − ν) evanescent modes, and was discussed in section 3 in
connection with the 2D δ-potential strip model (see also [10]).
The presence of evanescent modes enhances the localization
length (hence the average mean free path) in the TB model,
similar to the 2D δ-function strip model. The final result is
(compare with equation (49))

ξTB
ν (w) = 2νlν . (53)

It is worthwhile to note that the factor 2 which appears in
equations (49) and (53) is the consequence of the weak disorder
approximation used in the present paper. Indeed, it follows
from current conservation in an M-channel system that

M∑

n,m

〈|T (N)
nm |2〉 = M −

M∑

n,m

〈|R(N)
nm |2〉, (54)

which can be easily verified by using the explicit expressions
for the scattering matrix elements, equations (43)–(47),
calculated in the weak disorder approximation. By
expanding (23) to lowest order of the powers of the disorder
and, after averaging over realizations using the model for an
uncorrelated potential 〈εiεk〉 = ε2

0δik , one can show that the
inverse of the localization length, for sufficiently large L, is

1

ξTB
M

= 1

2N M

M∑

n,m=1

〈|R(N)
nm |2〉 ≡ 1

2MlM
. (55)

In deriving the first equality we used the fact that in
the weak disordered limit in Q1D systems the well-known
relationship between the various localization lengths takes
place, namely 〈ln T 〉 = 1

2 ln〈T 〉 (see, e.g., [9]). The latter
equality in equation (55) follows from the definition of the
average mean free path, equation (41).

Concluding this section let us note that influence of the
evanescent modes on localization length of the Q1D system
was also discussed in [15, 16], based on evaluation of the
double stochastic matrix, the size of which is proportional to
the strip width.

5. Summary

We consider two different models, mentioned in the
Introduction, which are appropriate for disordered mesoscopic
systems: (1) the δ-function potentials and (2) constant nearest-
neighbor coupling multichain tight-binding Anderson models.
They can be discussed within the framework of the same
approach. The general structure of electron scattering matrix
elements, the localization length and the average mean free
path in multi-channel systems are model-independent in both
models. To switch from a δ-potential model to a TB model one
must change the strength of the δ potential Vl by the diagonal
energy in the TB model and use the unperturbed GF for each

8
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case (see the appendix). We study the influence of evanescent
modes on the scaling behavior of the renormalized localization
length in both systems. We perform an analytical calculation
of the renormalized localization lengths for large numbers of
modes M , equations (27) and (36), for both models. We
also derive the localization lengths in the thermodynamic limit
in both models. We show that the presence of evanescent
modes enhances the RLL, (32), with respect to the value
obtained when evanescent modes are absent (27). We also
derive an exact relation between the localization length and the
corresponding average mean free path for M-channel systems
when evanescent modes are present.
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Appendix. 2D strip model with 2δ potentials and M
propagating modes

A.1. Incident from the left

Consider the strip model with two δ-function potentials located
at (x1, y1) and (x2, y2). An electron is incident from the left
onto the system. According to the general expression T (N)

nmL ,
equation (17), the amplitude of transmission in terms of the
single δ-function reflection amplitude, r (l)

nm (l = 1, 2), is

T (2)
nmL = eikm a1

det(D(2)

i, j )M,1

×

∣∣∣∣∣∣∣∣∣

δnm r (1)
nm r (2)

nm eikn a1

1 −1
∑M

p=1 r (1)
1p r (2)

pm eikp a1

r (1)
1m

e−ikm a1

∑M
p=1 r (2)

1p r (1)
pm eikp a1

r (2)
1m

−1

∣∣∣∣∣∣∣∣∣

, (56)

where r (l)
nm is defined by equation (15), the wavenumber kl

by (11) and a1 = x2 − x1. In the expression above, all kl

are real quantities. If the lth mode is evanescent, then kl = iκl

with κl is defined by (12). The denominator det(D(2)
i, j )M,1 in

equation (56), based on the definition, (16), in this case is

det(D(2)
i, j )M,1 =

∣∣∣∣∣∣

−1
∑M

p=1 r (1)
1p r (2)

pm eikp a1

r (1)
1m

∑M
p=1 r (2)

1p r (1)
pm eikp a1

r (2)
1m

−1

∣∣∣∣∣∣
. (57)

The reflection amplitude R(N)

nmL follows from equation (14) and
is given by

R(2)

nmL = 1

det(D(2)

i, j )M,1

×

∣∣∣∣∣∣∣∣∣

0 r (1)
nm r (2)

nm eikn a1

1 −1
∑M

p=1 r (1)
1p r (2)

pm eikp a1

r (1)
1m

eikm a1

∑M
p=1 r (2)

1p r (1)
pm eikp a1

r (2)
1m

−1

∣∣∣∣∣∣∣∣∣

. (58)

It can be verified directly that equation (56) for the case of two
modes (M = 2) leads to (n = m = 1)

T (2)
11 = eik1a1 [(1 + r (1)

11 )(1 + r (2)
11 ) + r (1)

12 r (2)
21 ei(k2−k1)a1

− r (1)

22 r (2)

22 e2ik2a1 − ei(k1+k2)a1r (2)

12 r (1)

21 ]
× [1 − r (1)

11 r (2)
11 e2ik1a1 − r (1)

22 r (2)
22 e2ik2a1

− (r (1)
12 r (2)

21 + r (1)
21 r (2)

12 )ei(k1+k2)a1]−1, (59)

which coincides with the expression of T (2)

11 calculated by the
transfer matrix method in [26] after the notation is adjusted
appropriately. The rest of the scattering matrix elements for
this case can easily be calculated from the above explicit
expressions.

A.2. Incident from the right

Using the procedure outlined in section 2, we can similarly
derive the expressions for the reflection and transmission
amplitudes for electrons incident from the right. The only
difference now is that we must isolate the term corresponding
to the points on the left-hand edge x1, x2, etc. The expressions
for the scattering matrix elements from the right are very
similar to equations (14) and (17). The essential difference is
that the numerators of R(N)

nm R and T (N)
nm R now are obtained from

the same determinant (16) by augmenting it on the right and
on the bottom. The transmission T (N)

nm R and reflection R(N)
nm R

amplitudes are, respectively,

T (2)
nm R = eikm a1

det(D(2)

i, j )M,1

×

∣∣∣∣∣∣∣∣∣

−1
∑M

p=1 r (1)
1p r (2)

pm eikp a1

r (1)
1m

e−ikm a1

∑M
p=1 r (2)

1p r (1)
pm eikp a1

r (2)
1m

−1 1

r (1)
nm eikn a1 r (2)

nm δnm

∣∣∣∣∣∣∣∣∣

, (60)

R(2)

nm R = 1

det(D(2)

i, j )M,1

×

∣∣∣∣∣∣∣∣∣

−1
∑M

p=1 r (1)
1p r (2)

pm eikp a1

r (1)
1m

eikm a1

∑M
p=1 r (2)

1p r (1)
pm eikp a1

r (2)
1m

−1 1

r (1)
nm eikn a1 r (2)

nm 0

∣∣∣∣∣∣∣∣∣

. (61)

Finally, we note that the expressions for T (N)
nm and R(N)

nm for a
left- and right-incident electron in the TB model are obtained
by replacing the unperturbed GF for normal mode n (see
equation (10)):

G0
n(x, x ′) = − i

2kn
eikn |x−x′ |

9
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by the appropriate GF for the TB model [39, 40]:

G0
n(m, l) = − i

2 sin qn
e−iqn |m−l|. (62)

The wavevector kn is given by equation (11) and qn is defined
by equation (35). The similarity between these two methods
was demonstrated in [46], where the authors studied the
density of states, the distribution of energy spacings and the
transmission coefficients of 1D quasiperiodic Fibonacci and
Thue–Morse systems using the zeros of the characteristic
determinants equation (16).
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